BMO estimates for the \(p\)-Laplacian (Q651136)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: BMO estimates for the \(p\)-Laplacian |
scientific article; zbMATH DE number 5987796
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | BMO estimates for the \(p\)-Laplacian |
scientific article; zbMATH DE number 5987796 |
Statements
BMO estimates for the \(p\)-Laplacian (English)
0 references
8 December 2011
0 references
The authors prove BMO estimates of the inhomogeneous \(p\)-Laplace system \[ -\text{div }(|\nabla u|^{p-2}\nabla u)=\text{div }f,\qquad p\in(1,\infty). \] It is shown that \(f\in\) BMO implies \(|\nabla u|^{p-2}\nabla u\in\) BMO, which is the limiting case of the nonlinear Calderón-Zygmund theory. Moreover, it is proved that \(A(\nabla u)=\varphi'(|\nabla u|)\frac{\nabla u}{|\nabla u|}\) inherits the Campanato and VMO regularity of \(f.\)
0 references
elliptic systems
0 references
\(p\)-Laplace
0 references
BMO estimates
0 references
nonlinear Calderón-Zygmund theory
0 references
Campanato estimates
0 references
0 references
0 references
0 references
0 references
0.9142533
0 references
0.9055912
0 references
0.8935028
0 references
0.8927088
0 references
0.8915599
0 references
0.89043057
0 references