Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space (Q652475)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space |
scientific article; zbMATH DE number 5988425
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space |
scientific article; zbMATH DE number 5988425 |
Statements
Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space (English)
0 references
14 December 2011
0 references
The authors deal with the Keller-Segel system \(\frac{\partial u}{\partial t} = \Delta u-\nabla \cdot (u\nabla v)\), \(\frac{\partial v}{\partial t} = \Delta v-v+u\) in \(\mathbb{R}^{n}\times (0,\infty )\), \(u(x,0) =u_{0}(x)\), \(v(x,0)=v_{0}(x)\), \(x\in \mathbb{R}^{n}\), for \(n\geq 3\), and prove the existence and uniqueness in the scaling invariant class \(u\in L^{q}(0,T;L^{r}(\mathbb{R}^{n}))\), \(v\in L^{\widetilde{ r}}(0,T;\dot{H}^{\beta ,\widetilde{r}}(\mathbb{R}^{n}))\), where \(2/q+n/r=2,\) \(2/\widetilde{q}+n/\widetilde{r}=2\beta \), \(\dot{H}^{\beta ,\widetilde{r}}( \mathbb{R}^{n})\) is the homogeneous Sobolev space, starting with \(u_{0}\in L^{n/2}(\mathbb{R}^{n})\), \(v_{0}\in \dot{H}^{2\alpha ,n/2\alpha }(\mathbb{R} ^{n})\) for \(n/2(n+2)\leq \alpha \leq 1/2\). They treat various cases for \(n,\) \(q,\) \(r.\) In particular, the uniqueness theorem holds for all \(n\geq 2\) and does not require any regularity of \(v,\) but \(u\in L^{q}(0,T;L^{r}(R^{n}))\) for \(2/q+n/r=2\), with \(n/2<r\leq \infty \). The method consists in \( L^{p}-L^{q}\) estimates for the heat semigroup \(e^{t\Delta }\) and various fundamental inequalities in the Lorentz spaces \(L^{p,r}(\mathbb{R}^{n})\).
0 references
Keller-Segel system
0 references
scaling invariant class
0 references
uniqueness theorem
0 references
Lorentz spaces
0 references
0 references
0 references
0 references
0 references
0 references
0.9396289
0 references
0.93865836
0 references
0.92864585
0 references
0.92528456
0 references
0.9181205
0 references
0.91087776
0 references
0.91035527
0 references
0.9040415
0 references
0.90403986
0 references