Steady-state bifurcation in Previte-Hoffman model (Q6537627)

From MaRDI portal





scientific article; zbMATH DE number 7847292
Language Label Description Also known as
English
Steady-state bifurcation in Previte-Hoffman model
scientific article; zbMATH DE number 7847292

    Statements

    Steady-state bifurcation in Previte-Hoffman model (English)
    0 references
    0 references
    0 references
    14 May 2024
    0 references
    The authors study the steady state of the \textit{J. P. Previte} and \textit{K. A. Hoffman} model [SIAM Rev. 55, No. 3, 523--546 (2013; Zbl 1272.92054)] with diffusion and prey-taxis,\N\begin{align*}\Nu_t&=d_1\Delta u+u(1-bu-v-w)\\\Nv_t&=d_2\Delta v+v(u-c)\\\Nw_t&=d_3\Delta w-\nabla\cdot(\chi w\nabla u)+ew(\alpha u+\beta v-rw-1) \ \mbox{in \(\Omega\times (0,T)\)}\N\end{align*}\Nwith\N\[\N\left. \frac{\partial}{\partial \nu}(u,v,w)\right\vert_{\partial \Omega}=0, \ \left. (u,v,w)\right\vert_{t=0}=(u_0(x), v_0(x), w_0(x))\geq 0,\N\]\Nwhere \(u\), \(v\), \(w\) stand for the prey, predator, and predator which scavenges \(v\), respectively, and \(\Omega=(0,L)\). There is a unique spatially homogeneous stationary state \(E=(u_\ast, v_\ast, w_\ast)\) defined by\N\[\Nu_\ast=c, \ v_\ast=\frac{r+1-c\alpha-bcr}{r+\beta}, \ w_\ast=\frac{c\alpha+\beta-bc\beta-1}{r+\beta},\N\]\Nif either\N\[\N\frac{1-\beta}{\alpha-b\beta}<c<\frac{1+r}{\alpha+rb}, \quad \beta<\min\{ 1, \frac{\alpha}{b}\}\N\]\Nor\N\[\N0<c<\min \{ \frac{1-\beta}{\alpha-b\beta}, \frac{1+r}{\alpha+rb} \}, \quad \beta >\max\{ 1, \frac{\alpha}{b}\}.\N\]\NFirst, the parameter region for \(E\) to be asymptotically linearly stable is prescribed. Second, bifurcation of spatially inhomogeneous steady states and their stability are examined by the bifurcation theory from simple eigenvalues. Then, several numerical results are exposed.
    0 references
    Previte-Hoffman model
    0 references
    prey-taxis
    0 references
    Crandall-Rabinowitz bifurcation theory
    0 references
    steady-state bifurcation
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references