Steady-state bifurcation in Previte-Hoffman model (Q6537627)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Steady-state bifurcation in Previte-Hoffman model |
scientific article; zbMATH DE number 7847292
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Steady-state bifurcation in Previte-Hoffman model |
scientific article; zbMATH DE number 7847292 |
Statements
Steady-state bifurcation in Previte-Hoffman model (English)
0 references
14 May 2024
0 references
The authors study the steady state of the \textit{J. P. Previte} and \textit{K. A. Hoffman} model [SIAM Rev. 55, No. 3, 523--546 (2013; Zbl 1272.92054)] with diffusion and prey-taxis,\N\begin{align*}\Nu_t&=d_1\Delta u+u(1-bu-v-w)\\\Nv_t&=d_2\Delta v+v(u-c)\\\Nw_t&=d_3\Delta w-\nabla\cdot(\chi w\nabla u)+ew(\alpha u+\beta v-rw-1) \ \mbox{in \(\Omega\times (0,T)\)}\N\end{align*}\Nwith\N\[\N\left. \frac{\partial}{\partial \nu}(u,v,w)\right\vert_{\partial \Omega}=0, \ \left. (u,v,w)\right\vert_{t=0}=(u_0(x), v_0(x), w_0(x))\geq 0,\N\]\Nwhere \(u\), \(v\), \(w\) stand for the prey, predator, and predator which scavenges \(v\), respectively, and \(\Omega=(0,L)\). There is a unique spatially homogeneous stationary state \(E=(u_\ast, v_\ast, w_\ast)\) defined by\N\[\Nu_\ast=c, \ v_\ast=\frac{r+1-c\alpha-bcr}{r+\beta}, \ w_\ast=\frac{c\alpha+\beta-bc\beta-1}{r+\beta},\N\]\Nif either\N\[\N\frac{1-\beta}{\alpha-b\beta}<c<\frac{1+r}{\alpha+rb}, \quad \beta<\min\{ 1, \frac{\alpha}{b}\}\N\]\Nor\N\[\N0<c<\min \{ \frac{1-\beta}{\alpha-b\beta}, \frac{1+r}{\alpha+rb} \}, \quad \beta >\max\{ 1, \frac{\alpha}{b}\}.\N\]\NFirst, the parameter region for \(E\) to be asymptotically linearly stable is prescribed. Second, bifurcation of spatially inhomogeneous steady states and their stability are examined by the bifurcation theory from simple eigenvalues. Then, several numerical results are exposed.
0 references
Previte-Hoffman model
0 references
prey-taxis
0 references
Crandall-Rabinowitz bifurcation theory
0 references
steady-state bifurcation
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references