Moderate deviations for parameter estimation in the fractional Ornstein-Uhlenbeck processes with periodic mean (Q6541371)

From MaRDI portal





scientific article; zbMATH DE number 7850965
Language Label Description Also known as
English
Moderate deviations for parameter estimation in the fractional Ornstein-Uhlenbeck processes with periodic mean
scientific article; zbMATH DE number 7850965

    Statements

    Moderate deviations for parameter estimation in the fractional Ornstein-Uhlenbeck processes with periodic mean (English)
    0 references
    0 references
    0 references
    0 references
    17 May 2024
    0 references
    The paper considers the fractional Ornstein-Uhlenbeck process with periodic mean function \(d{X_t} = \left( {\sum\limits_{i = 1}^p {{\mu _i}{\varphi _i}(t)} - \alpha {X_t}} \right)dt + dB_t^H\), \({X_0} = 0\), where \({B^H} = \left\{ {\left. {B_t^H,t \ge 0} \right\}} \right.\) is a fractional Brownian motion with Hurst index \(H \in \left( {\frac{1}{2},1} \right)\), parameters \(\theta = {\left( {{\mu _1},\ldots,{\mu _p},\alpha } \right)^T}\) are all unknown, with \({\mu _i} \in R\), \(\alpha > 0\), \(i = 1,\ldots,p\). It investigates the asymptotic properties of the drift parameter estimators for the process under consideration.
    0 references
    Cramér-type moderate deviation
    0 references
    fractional Ornstein-Uhlenbeck process
    0 references
    parameter estimation
    0 references
    multiple Wiener-Itô integrals
    0 references

    Identifiers