The Hadamard product of meromorphic univalent functions defined by using convolution (Q654270)

From MaRDI portal





scientific article; zbMATH DE number 5992329
Language Label Description Also known as
English
The Hadamard product of meromorphic univalent functions defined by using convolution
scientific article; zbMATH DE number 5992329

    Statements

    The Hadamard product of meromorphic univalent functions defined by using convolution (English)
    0 references
    0 references
    0 references
    28 December 2011
    0 references
    Let \(f(z)=\frac{a_0}{z}+\sum_{n=1}^\infty a_nz^n\), where \(a_0>0\), \(a_n\geq 0\), be a regular and univalent function in the punctured disc \(U^*=\left\{z\in\mathbb{C}: 0<|z|<1\right\}\). Let \(\varphi\) be a fixed function of the form \(\varphi(z)=\frac{a_0}{z}+\sum_{n=1}^\infty c_nz^n\) with \(a_0>0\) and \( c_n\geq c_1>0\). Consider the following function classes: \[ \begin{aligned} \Sigma_\varphi S^*(c_n,\delta)&=\left\{f(z):\sum_{n=1}^\infty c_na_n\leq\delta a_0\right\}\;(\delta>0)\\ \Sigma_\varphi C(c_n,\delta)&=\left\{f(z):\sum_{n=1}^\infty nc_na_n\leq\delta a_0\right\}\;(\delta>0)\\ \Sigma^k_\varphi C(c_n,\delta)&=\left\{f(z):\sum_{n=1}^\infty n^kc_na_n\leq\delta a_0\right\}\;(\delta>0).\end{aligned} \] In the paper under review, the authors obtain certain results concerning the Hadamard product of functions in these classes.
    0 references
    analytic function
    0 references
    meromorphic function
    0 references
    positive coefficients
    0 references
    Hadamard product
    0 references

    Identifiers