Eigenvalue asymptotic expansion for non-Hermitian tetradiagonal Toeplitz matrices with real spectrum (Q6542851)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Eigenvalue asymptotic expansion for non-Hermitian tetradiagonal Toeplitz matrices with real spectrum |
scientific article; zbMATH DE number 7852388
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Eigenvalue asymptotic expansion for non-Hermitian tetradiagonal Toeplitz matrices with real spectrum |
scientific article; zbMATH DE number 7852388 |
Statements
Eigenvalue asymptotic expansion for non-Hermitian tetradiagonal Toeplitz matrices with real spectrum (English)
0 references
23 May 2024
0 references
In this paper, the eigenvalues of certain Toeplitz matrices are studied using the generating function \(a_2 z^2 + a_1 z + a_0 + a_{-1} z^{-1}\), \(a_2, a_{-1} \neq 0\). Concretely, the authors use the Widom formula for the determinants of finite Toeplitz matrices to get a localization of all the eigenvalues.\NSome numerical experiments are given to test the main results.
0 references
Toeplitz matrix
0 references
eigenvalues
0 references
asymptotic expansion
0 references
limiting set
0 references
Laurent polynomial
0 references
0 references
0 references