The triangle algorithm for Bernoulli polynomials (Q6546724)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The triangle algorithm for Bernoulli polynomials |
scientific article; zbMATH DE number 7856146
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The triangle algorithm for Bernoulli polynomials |
scientific article; zbMATH DE number 7856146 |
Statements
The triangle algorithm for Bernoulli polynomials (English)
0 references
30 May 2024
0 references
Let \(\{B_n(x)\}\) be the Bernoulli polynomials defined by \(\frac{te^{xt}}{e^t-1}=\sum_{n=0}^{\infty}B_n(x)\frac{t^n}{n!}\). For non-negative integers \(m\) and \(n\) let \(b_{0,m}(x)=\frac 1{m+1}\) and \(b_{n+1,m}(x)=(m+x)b_{n,m}(x)-(m+1)b_{n,m+1}(x)\). The authors prove that \(B_n(x)=b_{n,0}(x)\) and give complicated generalizations for the so-called poly-Bernoulli polynomials and multi-poly Bernoulli polynomials.
0 references
Bernoulli polynomial
0 references
generating function
0 references
Stirling number
0 references
0 references