Global structure of positive and sign-changing periodic solutions for the equations with Minkowski-curvature operator (Q6547813)

From MaRDI portal





scientific article; zbMATH DE number 7857782
Language Label Description Also known as
English
Global structure of positive and sign-changing periodic solutions for the equations with Minkowski-curvature operator
scientific article; zbMATH DE number 7857782

    Statements

    Global structure of positive and sign-changing periodic solutions for the equations with Minkowski-curvature operator (English)
    0 references
    0 references
    0 references
    0 references
    31 May 2024
    0 references
    The authors investigate and show in the flat Minkowski space \N\[\N\mathbb L^{N+1}=\{(x,t): x\in \mathbb R^N, t\in \mathbb R\}\N\]\Nendowed with the Lorentzian metric, the existence of unbounded connected components of \(2\pi\)-periodic positive solutions for the equation with one-dimensional Minkowski-curvature operator\N\[\N-\left(\dfrac{u'}{\sqrt{1-u'^2}}\right)=\lambda a(x)f(u,u'), \quad x\in \mathbb R,\N\]\Nwhere \(\lambda\) is a positive parameter, \(a\in C(\mathbb R, \mathbb R)\) is a \(2\pi\)-periodic function and \(f\in C(\mathbb R \times \mathbb R, \mathbb R)\).
    0 references
    0 references
    Minkowski-curvature operator
    0 references
    bifurcation
    0 references
    periodic problem
    0 references
    sign-changing solutions
    0 references
    positive solutions
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references