Remark on the Strichartz estimates in the radial case (Q655490)

From MaRDI portal





scientific article; zbMATH DE number 5994347
Language Label Description Also known as
English
Remark on the Strichartz estimates in the radial case
scientific article; zbMATH DE number 5994347

    Statements

    Remark on the Strichartz estimates in the radial case (English)
    0 references
    0 references
    4 January 2012
    0 references
    The purpose of the paper is to prove Strichartz estimates for fractional powers of the Laplacian and radial initial data microlocalized at frequency \( 2^k \) (with \(k \in {\mathbb Z} \)). The result is that if \( u (t) = \exp (it|D|^a) u_0 \) then \[ \| u \|_{L^q_t L^r_x} \leq C 2^{k \big( \frac{n}{2} - \frac{a}{q} - \frac{n}{r} \big)} \| u_0 \|_{L^2}, \] provided that \(u_0\) is radially symmetric, that its Fourier transform is localized near \( |\xi| \sim 2^k \) and \[ n \geq 2, \qquad a > 0, \;a \neq 1, \quad 2 \leq q \leq \infty, \quad \frac{2}{q} + \frac{2n-1}{r} \leq n - \frac{1}{2}, \qquad (q,r) \neq \Big( 2 , \frac{4n-2}{2n-3} \Big). \]
    0 references
    Schrödinger equation
    0 references
    spherical symmetry
    0 references
    fractional Laplacian
    0 references

    Identifiers