Sobolev embedding theorem for anisotropically irregular domains (Q656344)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sobolev embedding theorem for anisotropically irregular domains |
scientific article; zbMATH DE number 5998412
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sobolev embedding theorem for anisotropically irregular domains |
scientific article; zbMATH DE number 5998412 |
Statements
Sobolev embedding theorem for anisotropically irregular domains (English)
0 references
17 January 2012
0 references
The paper deals with Sobolev embeddings \[ W^s_p (G) \subset L_q (G), \quad s \in \mathbb{N}, \quad 1<p<q<\infty, \] for a general class of domains \(G\) in \(\mathbb{R}^n\) admitting rotations of flexible horns. The author formulates in Theorem 2 sufficient conditions for \(s,p,q\) and characteristics of the domain \(G\) ensuring the above Sobolev embedding.
0 references
Sobolev spaces
0 references
embedding theorems
0 references
0.98635375
0 references
0.9863355
0 references
0.9512404
0 references
0.93715334
0 references
0.9344204
0 references
0 references
0 references
0.92111695
0 references
0.9206244
0 references