Cartan calculi on the free loop spaces (Q6564626)

From MaRDI portal





scientific article; zbMATH DE number 7873740
Language Label Description Also known as
English
Cartan calculi on the free loop spaces
scientific article; zbMATH DE number 7873740

    Statements

    Cartan calculi on the free loop spaces (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    1 July 2024
    0 references
    Let \(M\) be a simply-connected manifold and \(\mbox{aut}_1(M)\) the monoid of self-homotopy equivalences on \(M\). In 1977, \textit{D. Sullivan} [Publ. Math., Inst. Hautes Étud. Sci. 47, 269--331 (1977; Zbl 0374.57002)] proved that there exists an isomorphism \N\[\N\Phi: \pi_\ast (\mbox{aut}_1(M)) \otimes \mathbb R \longrightarrow H^{-\ast}_{AD}(\Omega^\ast (M)),\N\]\Nwhere \(\pi_\ast (\mbox{aut}_1(M))\) is regarded as a graded Lie algebra endowed with the Samelson product, \(\Omega^\ast (M)\) denotes the de Rham complex of \(M\) and \(H^{-\ast}_{AD}\) the André-Quillen cohomology.\N\NMain results (Propositions 4.3, 4.4 and Theorem 3.8) in this article provide the de Rham complex with values in the endomorphism ring of the Hochschild homology of \(\Omega (M)\) with a Cartan calculus and place an interpretation on the free loop space \(LM\).\N\NThe authors also give a geometric description of Sullivan's isomorphism, \(\Phi\), which relates the geometric Cartan calculus to the algebraic one, via the \(\Gamma_1\) map due to \textit{Y. Félix} and \textit{J.-C. Thomas} [Proc. Am. Math. Soc. 132, No. 1, 305--312 (2004; Zbl 1055.55010)].
    0 references
    Cartan calculus
    0 references
    Hochschild homology
    0 references
    cyclic homology
    0 references
    André-Quillen cohomology
    0 references
    free loop space
    0 references
    Sullivan model
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references