Some asymptotic properties of solutions to triharmonic equations (Q6570652)

From MaRDI portal





scientific article; zbMATH DE number 7879516
Language Label Description Also known as
English
Some asymptotic properties of solutions to triharmonic equations
scientific article; zbMATH DE number 7879516

    Statements

    Some asymptotic properties of solutions to triharmonic equations (English)
    0 references
    10 July 2024
    0 references
    In this paper the author studies optimization problems for the ``triharmonic equation'', a sixth-order partial differential equation given by \N\[\N(\nabla^2)^3 U=0,\N\]\Nwhere functions \(Q\) (of the Lipschitz class \(\mathrm{Lip}\,1\)) satisfying \N\[\N|Q(x_1)-Q(x_2)|\leq |x_1-x_2|\N\]\Nhave to be minimized.\N\NThe main result is given in\N\NTheorem 1. For functions of the Lipschitz class \(\mathrm{Lip}\,1\), the following exact equality holds: \N\[\N\mathbb{E} (\mathrm{Lip}\,1; P_3(y))_C = \sup_{f\in \mathrm{Lip}\,1}\,|f(x)-P_3(x,y)_C|=\frac{4y}{3\pi},\N\]\Nwhere \N\[\NP_3(x,y)=\frac{8y^5}{3\pi}\,\int_{-\infty}^{+\infty}\,\frac{f(x+t)dt}{(t^2+y^2)^3}\N\]\Nis a triharmonic Poisson integral on the upper half-plane in Cartesian coordinates.\N\NThe layout of the paper is as follows:\N\begin{itemize}\N\item[1.] Problem statement (1/2 page)\N\N\item[2.] Some historical information (1 page)\N\N\item[3.] Approximation of functions by triharmonic integrals in the upper half-plane (3 pages)\N\NThis section contains the main theorem and its proof.\N\N\item[4.] References (43 items)\N\end{itemize}
    0 references
    Lipschitz functions
    0 references
    uniform metric
    0 references
    triharmonic Poisson integral
    0 references

    Identifiers