On the inversion of Bessel ultrahyperbolic kernel of Marcel Riesz (Q657121)

From MaRDI portal





scientific article; zbMATH DE number 5997794
Language Label Description Also known as
English
On the inversion of Bessel ultrahyperbolic kernel of Marcel Riesz
scientific article; zbMATH DE number 5997794

    Statements

    On the inversion of Bessel ultrahyperbolic kernel of Marcel Riesz (English)
    0 references
    0 references
    0 references
    16 January 2012
    0 references
    Summary: We define the Bessel ultrahyperbolic Marcel Riesz operator on the function \(f\) by \(U^{\alpha}(f) = R^B_{\alpha} \ast f\), where \(R^B_{\alpha}\) is Bessel ultrahyperbolic kernel of Marcel Riesz, \(\alpha \in \mathbb C\), the symbol \(\ast\) denotes the convolution, and \(f \in \mathcal S\), where \(\mathcal S\) is the Schwartz space of functions. Our purpose in this paper is to obtain the operator \(E^\alpha = (U^\alpha)^{-1}\) such that, if \(U^\alpha (f) = \varphi\), then \(E^\alpha \varphi = f\).
    0 references
    Bessel ultrahyperbolic Marcel Riesz operator
    0 references
    Bessel ultrahyperbolic kernel
    0 references
    convolution
    0 references
    Schwartz space
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers