Topological aspects of matters and Langlands program (Q6572268)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Topological aspects of matters and Langlands program |
scientific article; zbMATH DE number 7880917
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Topological aspects of matters and Langlands program |
scientific article; zbMATH DE number 7880917 |
Statements
Topological aspects of matters and Langlands program (English)
0 references
15 July 2024
0 references
Ikeda relates various forms of duality in physics, such as the electric-magnetic duality, to the Langlands program, and examines implications for topological aspects of matter. Ikeda predicts that ``all dualities in physics are related to the Langlands program,'' and begins by recalling the setup for Geometric Langlands program. Note that at the top of page 5, the Jacobian of a complex curve is a quotient of \(\mathbb{C}^g/\Lambda\), where \(g\) need not equal 1 in general. Ikeda then gives an interpretation of Geometric Langlands in terms of physics. Statistical physics are also considered.
0 references
Langlands correspondence
0 references
duality
0 references
quantum topology
0 references
topological material
0 references
0 references
0 references
0 references
0 references