Additive energy of polynomial images (Q6581610)

From MaRDI portal





scientific article; zbMATH DE number 7889713
Language Label Description Also known as
English
Additive energy of polynomial images
scientific article; zbMATH DE number 7889713

    Statements

    Additive energy of polynomial images (English)
    0 references
    0 references
    0 references
    0 references
    31 July 2024
    0 references
    Let \(m, r\) be positive integers, \(f\in (\mathbf{Z}/m\mathbf{Z}) [x]\), \(f(x) = a_d x^d +\dots + a_0\) be a polynomial of degree \(d\ge 2\), and \(T_{f,m,r}\) be the number of solutions to the equation\N\[\Nf(x_1) + \dots + f(x_r) \equiv f(x'_1) + \dots + f(x'_r) \pmod m \,,\N\]\Nwhere \(x_j,x'_j\) run through the set \(\{1,\dots,H\}\).\N\NTheorem. Let \(a_d\) be coprime to \(m\) and \(r\le d(d+1)/2\). Assuming that\N\[\NT_{f,m,1} \ll H m^{o(1)} \,,\N\]\Nwe have\N\[\NT_{f,m,r} \le H^{2r-1+o(1)} m^{o(1)} \max \{ (m/H)^{-\alpha_{d,r}}, H^{-\beta_{d,r}} \} \,,\N\]\Nwhere \(\alpha_{d,r} = \frac{2(r-1)}{d^2+d-1}\) and \(\beta_{d,r}=\frac{2(r-1)}{d+2}\). Also,\N\[\NT_{f,m,2} \le H^{o(1)} \left( H^4 m^{-4/d(d+1)} + H^2 \right) \,.\N\]\NThe authors apply the obtained results to the corresponding sums with multiplicative characters. The proof uses the Vinogradov mean value theorem, some tools from geometry of numbers, and other ideas.
    0 references
    polynomial image
    0 references
    residue ring
    0 references
    Vinogradov mean value theorem
    0 references
    multiplicative character sum
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references