The twelfth moment of Hecke \(L\)-functions in the weight aspect (Q6583564)

From MaRDI portal





scientific article; zbMATH DE number 7892683
Language Label Description Also known as
English
The twelfth moment of Hecke \(L\)-functions in the weight aspect
scientific article; zbMATH DE number 7892683

    Statements

    The twelfth moment of Hecke \(L\)-functions in the weight aspect (English)
    0 references
    0 references
    0 references
    6 August 2024
    0 references
    Let \(\Gamma=\mathrm{SL}_2(\mathbb{Z})\) denote the modular group and let \(\mathcal{B}_{\mathrm{hol}}\) be an orthonormal basis of holomorphic Hecke cusp forms on the modular surface \(\Gamma\backslash \mathbb{H}\). Let \(f\in \mathcal{B}_{\mathrm{hol}}\) of weight \(k_f\in 2\mathbb{N}\). In this paper under review, the authors prove the following estimate concerning the twelfth moment of the central value \(L(\frac{1}{2}, f )\) of the Hecke \(L\)-function of \(f\) averaged over cusp forms of weight \(k_f\) in a given dyadic interval \N\[\N\sum_{\substack{f\in \mathcal{B}_{\mathrm{hol}}\\ T\leq k_f\leq 2T}}\frac{L\left(\frac{1}{2},f\right)^{12}}{L(1, \mathrm{ad}\: f)}\ll_\epsilon T^{4+\epsilon}.\N\]\NAs consequence, this bound recovers the well-known Weyl-strength subconvex bound \N\[\NL\left(\frac{1}{2},f\right)\ll_\epsilon k_f^{1/3+\epsilon} \N\]\Nand shows that for any \(\delta>0\), the sub-Weyl subconvex bound \N\[\NL\left(\frac{1}{2},f\right)\ll k_f^{1/3-\delta}\N\]\Nholds for all but \(O_\epsilon\left(T^{12\delta+\epsilon}\right)\) Hecke cusp forms \(f\) of weight at most \(T\).
    0 references
    0 references
    Hecke \(L\)-function
    0 references
    moments of Hecke \(L\)-functions
    0 references
    weight
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers