Stability condition and Riesz bounds for exponential splines (Q6587471)

From MaRDI portal





scientific article; zbMATH DE number 7896836
Language Label Description Also known as
English
Stability condition and Riesz bounds for exponential splines
scientific article; zbMATH DE number 7896836

    Statements

    Stability condition and Riesz bounds for exponential splines (English)
    0 references
    14 August 2024
    0 references
    Let \(p\in\mathbb{R}\setminus\{0\}\) and let \(m\in\mathbb{N}\). The author introduces a family of exponential splines \(U_{m,p}\) recursively as follows:\N\begin{align*}\NU_{1,p} (x) &:= \begin{cases} \frac{p e^{p x}}{e^p-1}, & x\in [0,1);\\\N0, & \text{else.} \end{cases}\\\NU_{m+1, p} (x)&:= (U_{m,p} * \chi_{[0,1)}) (x), \quad m\in \mathbb{N},\N\end{align*}\Nwhere \(*\) denotes convolution and \(\chi_{[0,1)}\) the indicator function of \([0,1)\). The last equation can be rewritten in the form\N\[\NU_{m+1, p} = Q_{m} * \varphi_p,\N\]\Nwhere \(Q_m\) denotes the cardinal B-splines of order \(m\) and \(\varphi_p := U_{1,p}\).\N\NThe stability of the integer translates of \(U_{m,p}\) for arbitrary \(m\) and \(p\) as defined above is established and the Riesz bounds computed. Furthermore, the method employed to obtain this result allows the computation of the Riesz bounds for the convolution of a cardinal B-splines \(Q_{m}\) of arbitrary order and a function with an appropriate Fourier transform.
    0 references
    E-spline
    0 references
    Riesz basis
    0 references
    Riesz bounds
    0 references
    functional series
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references