Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind (Q6589510)

From MaRDI portal





scientific article; zbMATH DE number 7898637
Language Label Description Also known as
English
Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind
scientific article; zbMATH DE number 7898637

    Statements

    Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind (English)
    0 references
    0 references
    0 references
    0 references
    19 August 2024
    0 references
    The authors provide several simple and alternative proofs of the conjecture proposed by G. Helms in the year 2013. They expand the composite function into power series whose coefficients are expressed in terms of the Dirichlet eta function and the Stirling numbers of the second kind.
    0 references
    0 references
    Dirichlet eta function
    0 references
    composite function
    0 references
    power series expansion
    0 references
    Stirling number of second kind
    0 references
    Riemann zeta function
    0 references
    partial Bell polynomial
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references