Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind (Q6589510)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind |
scientific article; zbMATH DE number 7898637
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind |
scientific article; zbMATH DE number 7898637 |
Statements
Expanding the function \(\ln(1 + \operatorname{e}^x)\) into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind (English)
0 references
19 August 2024
0 references
The authors provide several simple and alternative proofs of the conjecture proposed by G. Helms in the year 2013. They expand the composite function into power series whose coefficients are expressed in terms of the Dirichlet eta function and the Stirling numbers of the second kind.
0 references
Dirichlet eta function
0 references
composite function
0 references
power series expansion
0 references
Stirling number of second kind
0 references
Riemann zeta function
0 references
partial Bell polynomial
0 references
0 references
0 references
0 references
0 references