Genuinely sharp estimates for heat kernels on some planar cones being Weyl chambers (Q6592814)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Genuinely sharp estimates for heat kernels on some planar cones being Weyl chambers |
scientific article; zbMATH DE number 7901385
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Genuinely sharp estimates for heat kernels on some planar cones being Weyl chambers |
scientific article; zbMATH DE number 7901385 |
Statements
Genuinely sharp estimates for heat kernels on some planar cones being Weyl chambers (English)
0 references
26 August 2024
0 references
The author derives sharp heat kernel estimate by using purely analytic tools on planar cones with apertures \(\pi/3\) and \(\pi/4\). Precisely, for a planar cone \(C_\alpha\) with aperture \(\alpha\), \(\alpha=\pi/m\), \(m=3\) or \(m=4\), the Dirichlet heat kernel satisfies\N\begin{align*}\Np_t^{C_\alpha}(x,y)\sim \left(1\wedge \frac{\delta_v(x)\delta_v(y)}{t}\right)^{m-2}\left(1\wedge \frac{\delta_{r_1}(x)\delta_{r_1}(y)}{t}\right) \left(1\wedge \frac{\delta_{r_2}(x)\delta_{r_2}(y)}{t}\right) (4\pi t)^{-1}\exp\left(-\frac{|x-y|^2}{4t}\right),\N\end{align*}\Nwhere \(v\) denotes the vertex of the cone \(C_\alpha\), \(r_1\) and \(r_2\) denote the two boundary rays emanating from \(v\), \(\delta_v(x)\), \(\delta_{r_1}(x)\), \(\delta_{r_2}(x)\) denote the Euclidean distance from \(x\in C_\alpha\) to \(v\), \(r_1\), \(r_2\), respectively.
0 references
heat kernel
0 references
planar cone
0 references
Weyl chamber
0 references
sharp Gaussian estimate
0 references