On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\) (Q6598464)

From MaRDI portal





scientific article; zbMATH DE number 7906783
Language Label Description Also known as
English
On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\)
scientific article; zbMATH DE number 7906783

    Statements

    On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\) (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    5 September 2024
    0 references
    This paper studies asymptotic behavior of even solutions to the following defocusing, nonlinear Klein-Gordon equation\N\[\Nu_{tt}-u_{xx}+u-|u|^{p-1} u=0, \quad (t,x)\in \mathbb{R}\times \mathbb{R}\N\]\Nwith \(2\geq p>\frac{5}{3}\). Considering small, even perturbations of the soliton\N\[\NQ(x)=\left(\frac{p+1}{2}\right)^{1/(p-1)}\cosh^{-2/(p-1)}\left(\frac{p-1}{2} x\right)\N\]\Nand assuming the Fermi Golden Rule, the existence of asymptotic stability on a center hypersurface of \(Q\) is proven.
    0 references
    conditional stability
    0 references
    nonlinear Klein-Gordon
    0 references
    soliton
    0 references
    virial estimates
    0 references
    Fermi golden rule
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references