On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\) (Q6598464)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\) |
scientific article; zbMATH DE number 7906783
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\) |
scientific article; zbMATH DE number 7906783 |
Statements
On asymptotic stability on a center hypersurface at the soliton for even solutions of the nonlinear Klein-Gordon equation when \(2 \geq p > \frac{5}{3}\) (English)
0 references
5 September 2024
0 references
This paper studies asymptotic behavior of even solutions to the following defocusing, nonlinear Klein-Gordon equation\N\[\Nu_{tt}-u_{xx}+u-|u|^{p-1} u=0, \quad (t,x)\in \mathbb{R}\times \mathbb{R}\N\]\Nwith \(2\geq p>\frac{5}{3}\). Considering small, even perturbations of the soliton\N\[\NQ(x)=\left(\frac{p+1}{2}\right)^{1/(p-1)}\cosh^{-2/(p-1)}\left(\frac{p-1}{2} x\right)\N\]\Nand assuming the Fermi Golden Rule, the existence of asymptotic stability on a center hypersurface of \(Q\) is proven.
0 references
conditional stability
0 references
nonlinear Klein-Gordon
0 references
soliton
0 references
virial estimates
0 references
Fermi golden rule
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references