Minimal time impulse control for a class of homogeneous evolution equations (Q6604019)

From MaRDI portal





scientific article; zbMATH DE number 7912359
Language Label Description Also known as
English
Minimal time impulse control for a class of homogeneous evolution equations
scientific article; zbMATH DE number 7912359

    Statements

    Minimal time impulse control for a class of homogeneous evolution equations (English)
    0 references
    0 references
    0 references
    12 September 2024
    0 references
    Let \(X\) and \(U\) be two real separable Hilbert spaces which are the state space and the control space. The authors consider the impulse controlled homogeneous evolution equations at a given time \(\tau \geq 0\): \(x^{\prime }(t)=Ax(t)+g(t)x(t)\), \(t\in (0,+\infty )\setminus \{\tau \}\), \(x(0)=x_{0}\), \( x(\tau )=x(\tau ^{-})+Bu\), where \(x_{0}\in X\) is a given initial state, \( u\in U\) is a control input, \(B\in \mathcal{L}(U,X)\), \(x(\cdot )\) is right continuous at \(\tau \), \(x(\tau ^{-})=\lim_{t\rightarrow \tau ^{-}}x(t)\) in \(X\), \(A:D(A)\subseteq X\rightarrow X\) is the infinitesimal generator of a \(C^{0} \)-semigroup such that \(e^{tA}\) is compact for \(t>0\), \(B\in \mathcal{L}(U,X)\) and \(B\) is compact. \N\NA function \(x:[0,\infty )\rightarrow X\) is a mild solution to the above problem if it satisfies: \(x(t)=e^{tAx_{0}}+ \int_{0}^{t}e^{(t-s)Ag(s)}x(s)ds\), if \(t\in \lbrack 0,\tau )\), and \( x(t)=e^{tAx_{0}}+e^{(t-\tau )A}Bu+\int_{0}^{t}e^{(t-s)Ag(s)}x(s)ds\), if \(t\in \lbrack \tau ,+\infty )\). A mild solution \(x^{\tau }(\cdot ;x_{0},u)\) to the above problem satisfies \(x^{\tau }(\cdot ;x_{0},u)\in C([0,\tau );X)\cup C([\tau ,T];X)\) for every \(T>\tau \geq 0\). The authors define the set \(\mathfrak{U}_{ad}\) of admissible controls as: \(\mathfrak{U}_{ad}=\{u\in \mathfrak{U}_{M}:x^{\tau }(T;x_{0},u)\in B_{r}(0)\) for some \(T\geq \tau \}\), where \(\mathfrak{U}_{M}=\{u\in U:\left\Vert u\right\Vert _{U}\leq M\}\) and \( B_{r}(0)=\{x\in X:\left\Vert x\right\Vert _{X}\leq r\}\) is the target set. The optimal time impulse control problem is defined as: \(t^{\ast }(M,\tau )=inf\{T\geq \tau :x^{\tau }(T;x_{0},u)\in B_{r}(0)\) and \(u\in \mathfrak{U} _{M}\}\). An admissible control \( u^{\ast }\) is called the optimal control if \(x^{\tau }(t^{\ast }(M,\tau );x_{0},u^{\ast })\in B_{r}(0)\). \N\NThe first main result proves under hypotheses that the optimal time impulse control problem has a unique optimal control \(u^{\ast }\). Moreover, \(t^{\ast }(M,\tau )>\tau \) and \(\left\Vert u^{\ast }\right\Vert _{U}=M\). The second main result proves that then the function \(t^{\ast }(\cdot ,\cdot )\) is continuous at the point \((M,\tau )\). The paper ends with the analysis of two examples.
    0 references
    minimal time control
    0 references
    homogeneous evolution equation
    0 references
    impulse control
    0 references
    bang-bang property
    0 references
    minimal time function
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references