Weighted Sobolev inequality in Musielak-Orlicz space (Q662051)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weighted Sobolev inequality in Musielak-Orlicz space |
scientific article; zbMATH DE number 6005674
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weighted Sobolev inequality in Musielak-Orlicz space |
scientific article; zbMATH DE number 6005674 |
Statements
Weighted Sobolev inequality in Musielak-Orlicz space (English)
0 references
11 February 2012
0 references
Let \(L_{p,q,\beta}(\mathbb{R}^n)\) be the Lebesgue space with continuous variable exponents \(p\), \(q\) satisfying the log-Hölder and log-log-Hölder condition, respectively, defined by means of the quasi-norm \[ \| f\|_{L_{p,q,\beta}(\mathbb{R}^n)}= \text{inf}\{\lambda> 0: \int(1+ |y|)^{\beta(y)}|f(y)/\lambda|^{p(y)}\cdot[\log(e+ |y|)^{\beta(y)}\cdot|f(y)/\lambda|]J^{q(y)}dy\leq 1\}. \] Let \(p^*(x)\) and \(q^*(x)\) denote the Sobolev conjugates of \(p(x)\) and \(q(x)\), respectively. Finally, let \[ I_\alpha f(x)= \int|x- y|^{\alpha(x)-n} f(y)\,dy \] be the Riesz potential of order \(\alpha\). The authors prove the estimates \(\| Mf\|_{L_{p^*,q^*,\beta}(\mathbb{R}^n)}\leq C\| f\|_{L_{p,q,\beta}(\mathbb{R}^n)}\), where \(\alpha^+- np_\infty<\beta< n(t- 1/p^-)\) and \(Mf(x)\) is the maximal function of \(f\). This easily implies the estimate \(\| I_\alpha f\|_{L_{p^*,p^*q/p, \beta}(\mathbb{R}^n)}\leq C\| f\|_{L_{p,q,\beta}(\mathbb{R}^n)}\).
0 references
Musielak-Orlicz spaces with variable exponents
0 references
Sobolev inequality
0 references
Riesz potential
0 references
0 references
0 references
0 references
0.94518983
0 references
0.9288807
0 references
0 references
0 references
0.92570984
0 references