Sharp maximal function estimates for Hilbert transforms along monomial curves in higher dimensions (Q6632430)

From MaRDI portal





scientific article; zbMATH DE number 7938416
Language Label Description Also known as
English
Sharp maximal function estimates for Hilbert transforms along monomial curves in higher dimensions
scientific article; zbMATH DE number 7938416

    Statements

    Sharp maximal function estimates for Hilbert transforms along monomial curves in higher dimensions (English)
    0 references
    0 references
    4 November 2024
    0 references
    This paper is concerned with maximal function estimates for Hilbert transforms along curves in higher dimensions.\N\NFor an integer \(d \geq 2\), let \(\{\alpha_l\}_{l=1}^d\) be a sequence of distinct positive constants. Define the curve \(\gamma : \mathbb{R} \rightarrow \mathbb{R}^d\) by \(\gamma(s) = (s^{\alpha_1}, s^{\alpha_2}, \ldots, s^{\alpha_d})\). The Hilbert transform along the curve \(u\gamma(s)\) for \(u > 0\) is defined by \N\[\NH^{(u)}f(x) = p. v. \int_\mathbb{R} f(x + u\gamma(s))\frac{ds}{s}\;.\N\]\NFor an arbitrary nonempty set \(U \subset \mathbb{R}^+\), we define the related maximal function \N\[\N\mathcal{H}^U f(x) = \sup_{u \in U}\left|H^{(u)}f(x)\right|\;.\N\]\NAlso associated to \(U\) is the constant \N\[\N\mathfrak{R}(U) =\#\{n \in \mathbb{Z} : [2^n, 2^{n+1}) \cap U \neq \emptyset\}\;.\N\]\NWe define \(p_0(d)\) by \N\[\Np_0(d) = \begin{cases} d & if \;\; d = 2,3 \\\N2d - 2 & if \;\; d \geq 4\;. \end{cases} \N\]\NThe main theorem of the paper is the following. \N\NLet \(d \geq 3\). For each \(p \in (p_0(d), \infty)\), the operator \(\mathcal{H}^U\) is \(L^p\)-bounded if and only if \(\mathfrak{R}(U) < \infty\). Moreover, we have \N\[\N\left\|\mathcal{H}^U\right\|_{L^p \rightarrow L^p} \sim \sqrt{\log ( e + \mathfrak{R}(U))}\;.\N\]
    0 references
    maximal function
    0 references
    Hilbert transform
    0 references
    monomial curves
    0 references
    higher dimensions
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references