Widths between the anisotropic spaces and the spaces of functions with mixed smoothness (Q663554)

From MaRDI portal





scientific article; zbMATH DE number 6009280
Language Label Description Also known as
English
Widths between the anisotropic spaces and the spaces of functions with mixed smoothness
scientific article; zbMATH DE number 6009280

    Statements

    Widths between the anisotropic spaces and the spaces of functions with mixed smoothness (English)
    0 references
    25 February 2012
    0 references
    The main focus of the paper is on the derivation of sharp asymptotic orders of the Kolmogorov, Gelfand, linear, and orthoprojection widths of the classes \(BF^r_{\text{mix}, p}\) in the anisotropic space \(F^{\mathbf{R}}_q\) and those of the classes \(BF^{\mathbf {R}}_q\) in the space \(F^r_{\text{mix},q}\), for all \(p,q\in [1, \infty]\). Here, \(F^r_{\text{mix},q}\) denotes either the Sobolev space \(W^r_{\text{mix},q}\) of mixed smoothness or the Hölder-Nikolskii space \(H^r_{\text{mix},q}\) of mixed smoothness, and \(F^{\mathbf {R}}_q\) either the anisotropic Sobolev space \(W^{\mathbf{R}}_q\) or the anisotropic Hölder-Nikolskij space \(H^{\mathbf{R}}_q\). The quantities \(BF^{\mathbf {R}}_q\) and \(BF^{\mathbf {R}}_q\) represent the unit ball of the spaces \(F^r_{\text{mix},q}\) and \(F^{\mathbf {R}}_q\), respectively.
    0 references
    Kolmogorov widths
    0 references
    Gelfand widths
    0 references
    linear widths
    0 references
    orthoprojection widths
    0 references
    anisotropic spaces
    0 references
    spaces of functions with mixed smoothness
    0 references
    0 references

    Identifiers