Abstract multiplicity results for \((p, q)\)-Laplace equations with two parameters (Q6645849)

From MaRDI portal





scientific article; zbMATH DE number 7951505
Language Label Description Also known as
English
Abstract multiplicity results for \((p, q)\)-Laplace equations with two parameters
scientific article; zbMATH DE number 7951505

    Statements

    Abstract multiplicity results for \((p, q)\)-Laplace equations with two parameters (English)
    0 references
    0 references
    0 references
    29 November 2024
    0 references
    The paper considers the Dirichlet problem for the equation \[-\Delta_p u -\Delta_q u = \alpha |u|^{ p-2} u + \beta |u| ^{q-2} u\] in a bounded smooth domain, with \(1 < q < p\) and \(\alpha,\beta\in\mathbb{R}\). The aim is to obtain multiplicity of solutions (either positive or sign changing) for suitable combination of the parameters \(\alpha,\beta\).\N\NSolutions, either with positive or with negative energy, are obtained via variational methods and in particular using a Nehari manifold analysis and Ljusternik-Schnirelmann theory.\N\NThe conditions on \(\alpha,\beta\) are related to the variational eigenvalues of \(-\Delta_p\) and \(-\Delta_q\), and to the following critical parameters \[ \beta_*(\alpha)=\inf \left\{\frac{\|\nabla u\|_q^q}{\|u\|_q^q}: u \in W_0^{1, p} \backslash\{0\} \text { and } \|\nabla u\|_p^p\leq \alpha\|u) \|_p^p\right\}. \]
    0 references
    0 references
    \(p\)-Laplacian
    0 references
    \((p, q)\)-Laplacian
    0 references
    variational eigenvalues
    0 references
    multiplicity
    0 references
    symmetric mountain pass theorem
    0 references
    Nehari manifold
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references