Positive solutions of elliptic systems with superlinear terms on the critical hyperbola (Q6655901)

From MaRDI portal





scientific article; zbMATH DE number 7960930
Language Label Description Also known as
English
Positive solutions of elliptic systems with superlinear terms on the critical hyperbola
scientific article; zbMATH DE number 7960930

    Statements

    Positive solutions of elliptic systems with superlinear terms on the critical hyperbola (English)
    0 references
    0 references
    0 references
    0 references
    27 December 2024
    0 references
    Let \(\Omega\subset\mathbb{R}^N\), \(N\geq 3\) be a bounded domain of class \(C^2\). The authors discuss the existence of positive solutions to the system \N\[ \N\begin{cases} -\Delta v=\frac{u^p}{\ln^\alpha(e+u)}&\quad\mbox{ in }\Omega,\\\N-\Delta u = \frac{v^q}{\ln^\beta(e+v)}&\quad\mbox{ in }\Omega,\\\Nu=v=0&\quad\mbox{ on }\partial\Omega,\\\N\end{cases} \N\] \Nwhere \(p, q>0\), \(\alpha\leq p\), \(\beta\leq q\) and either \N\[\N 1>\frac{1}{p+1}+\frac{1}{q+1}>\frac{N-2}{N} \N\] \Nor \N\[\N \frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N}\quad\mbox{ and }\quad \frac{\alpha}{p+1}+\frac{\beta}{q+1}>0. \N\]\NThe main result of the article establishes the existence of a positive mountain pass type solution. The approach relies on the dual method which requires the authors to investigate the critical points of an energy functional defined on an appropriate Orlicz space.
    0 references
    0 references
    semilinear second-order system with Laplacian
    0 references
    existence of a mountain pass solution
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references