On a Mertens-type conjecture for number fields (Q6659645)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a Mertens-type conjecture for number fields |
scientific article; zbMATH DE number 7964102
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a Mertens-type conjecture for number fields |
scientific article; zbMATH DE number 7964102 |
Statements
On a Mertens-type conjecture for number fields (English)
0 references
9 January 2025
0 references
For a number field \(K\) let \(\mu\) denote the Möbius function assigning an integer to each integer ideal \( \mathfrak{a}\) according to the formula \N\[\N\mu\big(\mathfrak{p}^k\big)=\begin{cases}1 &\text{ if}\ k=0,\\\N-1& \text{ if}\ k=1,\\\N0 &\text{ if}\ k\geqslant 2,\end{cases} \N\]\Nfor prime ideals \(\mathfrak{p}\). Let \N\[\NM_K(x)=\sum_{N(\mathfrak{a})\leqslant x}\mu(\mathfrak{a}) \N\]\Nbe the Mertens function.\N\NThe authors of the paper consider problems related to the behavior of the Mertens function. For instance, they prove that the naïve Mertens-type conjecture \N\[\N-1\leqslant\liminf_{x\rightarrow\infty}\frac{M_K(x)}{\sqrt{x}}\leqslant\limsup_{x\rightarrow\infty}\frac{M_K(x)}{\sqrt{x}}\leqslant 1 \N\]\Nis false for any imaginary extension of \(\mathbb{Q}\) with exception \(K=\mathbb{Q}(\sqrt{-3})\).
0 references
Number field
0 references
Mobius function
0 references
Mertens function
0 references
Mertens conjecture
0 references
imaginary extension
0 references
signature of field
0 references
Riemann hypothesis
0 references
logarithmic density
0 references
almost periodic function
0 references
Lebesgue point
0 references
trigonometric polynomial.
0 references
0 references