Constancy of \(\bar{\phi}\)-holomorphic sectional curvature for an indefinite generalized \(g \cdot f \cdot f\)-space form (Q666323)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Constancy of \(\bar{\phi}\)-holomorphic sectional curvature for an indefinite generalized \(g \cdot f \cdot f\)-space form |
scientific article; zbMATH DE number 6012964
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Constancy of \(\bar{\phi}\)-holomorphic sectional curvature for an indefinite generalized \(g \cdot f \cdot f\)-space form |
scientific article; zbMATH DE number 6012964 |
Statements
Constancy of \(\bar{\phi}\)-holomorphic sectional curvature for an indefinite generalized \(g \cdot f \cdot f\)-space form (English)
0 references
8 March 2012
0 references
Summary: Bonome et al., 1997, provided an algebraic characterization for an indefinite Sasakian manifold to reduce to a space of constant \(\phi\)-holomorphic sectional curvature. In this present paper, we generalize the same characterization for indefinite \(g \cdot f \cdot f\)-space forms.
0 references
\(\phi\)-holomorphic sectional curvature
0 references
indefinite
0 references
space forms
0 references
0.9274388
0 references
0.90933025
0 references
0.88778776
0 references
0.88666475
0 references