Computing a compact local Smith–McMillan form (Q6665962)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Computing a compact local Smith–McMillan form |
scientific article; zbMATH DE number 7969960
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Computing a compact local Smith–McMillan form |
scientific article; zbMATH DE number 7969960 |
Statements
Computing a compact local Smith–McMillan form (English)
0 references
17 January 2025
0 references
The authors describe an algorithm to compute the compact local Smith-McMillan form of a rational complex matrix \(R(\lambda)\) as follows:\N\[\NR(\lambda) N_r(\lambda) = M_r(\lambda) \ \operatorname{diag} \left( (\lambda-\lambda_0)^{\sigma_1}, \ldots,(\lambda-\lambda_0)^{\sigma_r} \right),\N\]\Nwhere \(\sigma_1, \ldots, \sigma_r\) are the structural indices of \(R(\lambda)\) at \(\lambda_0\), \(N_r(\lambda)\) has a polynomial left inverse and \(M_r(\lambda)\) is left invertible at \(\lambda_0\), and\N\[\NM_l(\lambda) R(\lambda) = \ \operatorname{diag} \left( (\lambda-\lambda_0)^{\sigma_1}, \ldots,(\lambda-\lambda_0)^{\sigma_r} \right) N_l(\lambda),\N\]\N\(M_l(\lambda)\) has a polynomial right inverse and \(N_l(\lambda)\)is right invertible at \(\lambda_0\).\N\NThe authors give numerical results for the computation of the compact local Smith.
0 references
0 references
0 references
0 references
0 references
0 references