Bilinear Calderón-Zygmund operators on products of variable Hardy spaces (Q670966)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bilinear Calderón-Zygmund operators on products of variable Hardy spaces |
scientific article; zbMATH DE number 7039548
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bilinear Calderón-Zygmund operators on products of variable Hardy spaces |
scientific article; zbMATH DE number 7039548 |
Statements
Bilinear Calderón-Zygmund operators on products of variable Hardy spaces (English)
0 references
20 March 2019
0 references
Let $p:\mathbb{R}^n\to (0, \infty]$ be a measurable function. Then the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ consists of all Lebesgue measurable functions $f$ satisfying \[ \int_{\mathbb{R}^n}|\epsilon f(x)|^{p(x)}\,dx<\infty \] for some $\epsilon\in(0,\infty)$. Moreover, for any $f\in L^{p(\cdot)}(\mathbb{R}^n)$, let \[ \|f\|_{L^{p(\cdot)}(\mathbb{R}^n)}:=\inf\left\{\lambda>0: \int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)}\,dx\le 1\right\}. \] In this paper, under some assumptions for the function $p(\cdot)$, the author obtains the boundedness of bilinear Calderón-Zygmund operators from products of variable Hardy spaces into variable Lebesgue spaces or variable Hardy spaces.
0 references
bilinear Calderón-Zygmund operators
0 references
variable exponent
0 references
atomic decomposition
0 references
Hardy space
0 references
0 references
0 references
0 references
0 references