Brouwer degrees of the gradient maps of isoparametric functions (Q674703)

From MaRDI portal





scientific article; zbMATH DE number 987522
Language Label Description Also known as
English
Brouwer degrees of the gradient maps of isoparametric functions
scientific article; zbMATH DE number 987522

    Statements

    Brouwer degrees of the gradient maps of isoparametric functions (English)
    0 references
    6 March 1997
    0 references
    Let \(f:\mathbb{R}^{n+2}\to \mathbb{R}\) be an isoparametric polynomial of degree \(k\) and \(\Phi:\mathbb{R}^{n+2}\to \mathbb{R}^{n+2}\) the associated homogeneous map, \(\Phi={1\over k}\nabla f\). The author studies the relationship between the tangent map of \(\Phi\) and the Hessian of \(f\), finds a certain decomposition of \(f\) and calculates the degree of \(\Phi\).
    0 references
    Brouwer degree
    0 references
    harmonic map
    0 references
    isoparametric polynomial
    0 references
    0 references

    Identifiers