Brouwer degrees of the gradient maps of isoparametric functions (Q674703)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Brouwer degrees of the gradient maps of isoparametric functions |
scientific article; zbMATH DE number 987522
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Brouwer degrees of the gradient maps of isoparametric functions |
scientific article; zbMATH DE number 987522 |
Statements
Brouwer degrees of the gradient maps of isoparametric functions (English)
0 references
6 March 1997
0 references
Let \(f:\mathbb{R}^{n+2}\to \mathbb{R}\) be an isoparametric polynomial of degree \(k\) and \(\Phi:\mathbb{R}^{n+2}\to \mathbb{R}^{n+2}\) the associated homogeneous map, \(\Phi={1\over k}\nabla f\). The author studies the relationship between the tangent map of \(\Phi\) and the Hessian of \(f\), finds a certain decomposition of \(f\) and calculates the degree of \(\Phi\).
0 references
Brouwer degree
0 references
harmonic map
0 references
isoparametric polynomial
0 references
0 references
0 references
0.86629176
0 references
0.86344993
0 references
0.8625492
0 references
0 references