Nonlinear boundary value problem for biregular functions in Clifford analysis (Q674710)

From MaRDI portal





scientific article; zbMATH DE number 987541
Language Label Description Also known as
English
Nonlinear boundary value problem for biregular functions in Clifford analysis
scientific article; zbMATH DE number 987541

    Statements

    Nonlinear boundary value problem for biregular functions in Clifford analysis (English)
    0 references
    0 references
    31 August 1999
    0 references
    The author has discussed the biregular function in Clifford analysis, the Plemelj's formula is obtained and a nonlinear BVP: \[ \begin{multlined} A(t_1,t_2) \Phi^{++} (t_1,t_2)+ B(t_1,t_2) \Phi^{+-}(t_1,t_2)+ C(t_1,t_2) \Phi^{-+} (t_1,t_2)+\\ +D(t_1,t_2) \Phi^{--} (t_1,t_2)= g(t_1,t_2) f(t_1,t_2) \Phi^{++} (t_1,t_2) \Phi^{+-}(t_1,t_2), \Phi^{-+} (t_1,t_2) \Phi^{--} (t_1, t_2)\end{multlined} \] is considered. Applying the method of integral equation and Schauder fixed-point theorem, the existence of the solution for the above problem is proved.
    0 references
    existence of solution
    0 references
    biregular function
    0 references
    Clifford analysis
    0 references
    nonlinear BVP
    0 references
    0 references

    Identifiers