On the feedback vertex set problem for a planar graph (Q678111)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the feedback vertex set problem for a planar graph |
scientific article; zbMATH DE number 1000218
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the feedback vertex set problem for a planar graph |
scientific article; zbMATH DE number 1000218 |
Statements
On the feedback vertex set problem for a planar graph (English)
0 references
15 September 1997
0 references
If a directed graph has cycles, we can remove some nodes so that the remaining graph becomes acyclic. Such a set of nodes is called a feedback vertex set. These nodes could form the set of indices involved in the Schur complement problem. The paper presents an algorithm for solving the feedback vertex set problem for planar digraphs. In particular, planar digraphs with a certain additional condition are considered as they arise from solving systems of linear equations obtained from convection-dominated flow problems. The proposed algorithm requires a computational work linear in the size of the digraph. As a side product, the algorithm for determining the feedback vertex set produces a disjoint decomposition of the digraph into subsets (concentric cycles) mainly consisting of one cycle.
0 references
acyclic digraph
0 references
feedback vertex set problem
0 references
planar digraphs
0 references
algorithm
0 references
decomposition
0 references