Reaction-diffusion equations on unbounded thin domains (Q696172)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Reaction-diffusion equations on unbounded thin domains |
scientific article; zbMATH DE number 1799624
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Reaction-diffusion equations on unbounded thin domains |
scientific article; zbMATH DE number 1799624 |
Statements
Reaction-diffusion equations on unbounded thin domains (English)
0 references
9 October 2002
0 references
The authors consider the family of reaction-diffusion Neumann problems \[ u_t=\Delta u - \lambda u + f(u) +g\quad\text{in} \Omega_\varepsilon\times\mathbb{R}_+,\qquad \frac{\partial u}{\partial\nu_\varepsilon}=0\quad\text{in} \partial\Omega_\varepsilon\times{\mathbb R}_+, \] where \(\nu_\varepsilon\) is the outward normal to \(\partial\Omega_\varepsilon\), \(\Omega_\varepsilon=\{(x, \varepsilon y)\in \mathbb{R}^{N+P}: (x, y)\in\Omega\}\). The main result is the proof of existence and upper semicontinuity of attractors.
0 references
upper semicontinuity
0 references
Neumann problems
0 references