On \(L_{p}\)-generalization of a theorem of Adamyan, Arov, and Kreĭn (Q696898)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On \(L_{p}\)-generalization of a theorem of Adamyan, Arov, and Kreĭn |
scientific article; zbMATH DE number 1800270
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On \(L_{p}\)-generalization of a theorem of Adamyan, Arov, and Kreĭn |
scientific article; zbMATH DE number 1800270 |
Statements
On \(L_{p}\)-generalization of a theorem of Adamyan, Arov, and Kreĭn (English)
0 references
12 September 2002
0 references
The Adamyan-Arov-Krein theorem [\textit{V. M. Adamjan, D. Z. Arov} and \textit{M. G. Krein}, Mat. Sb., N. Ser. 86(128), 34-75 (1971; Zbl 0243.47023)] is extended to the case when the symbol \(f\) of a Hankel operator is a measurable function on the boundary \(\Gamma\) of a simple connected domain \(G\) such that \(f\in L_p(\Gamma)\), \(1\leq p< \infty\).
0 references
meromorphic approximation
0 references
Hankel operator
0 references
Adamyan-Arov-Krein theorem
0 references
Jordan curve
0 references
\(n\)th Gelfand/Kolmogorov number
0 references
Blaschke product
0 references
\(s\)-number
0 references
0 references
0 references
0.89141405
0 references
0 references
0.8890992
0 references
0.88868415
0 references
0.88476527
0 references
0 references