On the mean curvatures sharp estimates of hypersurfaces (Q699007)

From MaRDI portal





scientific article; zbMATH DE number 1810507
Language Label Description Also known as
English
On the mean curvatures sharp estimates of hypersurfaces
scientific article; zbMATH DE number 1810507

    Statements

    On the mean curvatures sharp estimates of hypersurfaces (English)
    0 references
    2 September 2003
    0 references
    Let \(N\) be a hypersurface of a Riemannian manifold \(M\) and denote the principal curvatures by \(k_1, \cdots , k_n\). Define the mean curvatures \(H_i\) of \(N\) by \(\prod_{i=1}^n(1+k_ix)=\sum_{i=1}^n\binom ni H_ix^i\). The author gives a sharp estimate for \(H_i\) in the case where \(M\) is a warped product of \(\mathbb{R}\) and a Ricci-flat manifold.
    0 references
    0 references
    hypersurface
    0 references
    mean curvature
    0 references
    estimate
    0 references

    Identifiers