The \(p^{a}\)-regular partition function modulo \(p^{j}\) (Q700199)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The \(p^{a}\)-regular partition function modulo \(p^{j}\) |
scientific article; zbMATH DE number 1809764
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The \(p^{a}\)-regular partition function modulo \(p^{j}\) |
scientific article; zbMATH DE number 1809764 |
Statements
The \(p^{a}\)-regular partition function modulo \(p^{j}\) (English)
0 references
30 September 2002
0 references
Let \(b_l(n)\) denote the number of \(l\)-regular partitions of the natural number \(n\), that is the number of partitions of \(n\) into parts not divisible by \(l\), or equivalently, the number of partitions of \(n\) such that no part occurs \(l\) or more times. Let \(p\) be a prime, \(a,j\) positive integers, \(l=p^a\), \(1\leq i\leq p^j-1\). The author obtains estimates for the number of integers, \(k\), such that \(k\leq X\) and \(b_l(k)\equiv i\pmod {p^j}\).
0 references
number of \(l\)-regular partitions
0 references
0 references