On principal eigenvalues for periodic parabolic Steklov problems (Q700889)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On principal eigenvalues for periodic parabolic Steklov problems |
scientific article; zbMATH DE number 1814787
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On principal eigenvalues for periodic parabolic Steklov problems |
scientific article; zbMATH DE number 1814787 |
Statements
On principal eigenvalues for periodic parabolic Steklov problems (English)
0 references
15 October 2002
0 references
Summary: Let \(\Omega\) be a \(C^{2+\gamma}\) domain in \({\mathbb R}^{N}\), \(N\geq 2\), \(0<\gamma <1\). Let \(T>0\) and let \(L\) be a uniformly parabolic operator \[ Lu=\partial u/\partial t-\sum_{i,j} (\partial /\partial x_{i}) (a_{ ij} (\partial u/\partial x_{j}))+\sum_{j}b_{j} (\partial u/\partial x_{i})+a_{0}u, \qquad a_{0}\geq 0, \] whose coefficients, depending on \((x,t)\in \Omega \times {\mathbb R}\), are \(T\) periodic in \(t\) and satisfy some regularity assumptions. Let \(A\) be the \(N\times N\) matrix whose \(i,j\) entry is \(a_{ ij}\) and let \(\nu\) be the unit exterior normal to \(\partial \Omega\). Let \(m\) be a \(T\)-periodic function (that may change sign) defined on \(\partial \Omega\) whose restriction to \(\partial \Omega \times {\mathbb R}\) belongs to \(W_q^{2-1/q,1-1/2q}(\partial \Omega \times (0,T))\) for some large enough \(q\). In this paper, we give necessary and sufficient conditions on \(m\) for the existence of principal eigenvalues for the periodic parabolic Steklov problem \(Lu=0\) on \(\Omega \times {\mathbb R}\), \(\langle A\nabla u,\nu \rangle =\lambda mu\) on \(\partial \Omega \times {\mathbb R}\), \(u (x,t)=u (x,t+T)\), \(u>0\) on \(\Omega \times {\mathbb R}\). Uniqueness and simplicity of the positive principal eigenvalue is proved and a related maximum principle is given.
0 references
uniqueness and simplicity of the positive principal eigenvalue
0 references