A generalization of the Itô formula (Q700895)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of the Itô formula |
scientific article; zbMATH DE number 1814791
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of the Itô formula |
scientific article; zbMATH DE number 1814791 |
Statements
A generalization of the Itô formula (English)
0 references
15 October 2002
0 references
Let \(f\in L^\infty([a,b])\), \(\theta\in C^2({\mathbb R}^2)\) and \(X(t)=\int_a^tf(s)dB(s)\) be the Wiener integral. The white noise calculus is used to derive an (anticipating) version of the Itô\ formula for \(\theta(X(t),F)\), where \(F\in{\mathcal W}^{1/2}\), and \({\mathcal W}^{1/2}\) is a Sobolev space in the Hilbert space \((L^2)=L^2({\mathcal S}'({\mathbb R}),\mu)\), the measure \(\mu\) being the standard Gaussian measure on the space of tempered distributions \({\mathcal S}'({\mathbb R})\). This is a generalization of a well known formula, where \(F=B(c)\) for some \(c\in [a,b]\) [see \textit{H. H. Kuo}, ``White noise distribution theory'' (1996; Zbl 0853.60001)].
0 references
white noise calculus
0 references
Hitsuda-Skorokhod integral
0 references
Itô\ formula
0 references
0.9441525
0 references
0.93878406
0 references
0.93702376
0 references
0 references
0.9152945
0 references