A remark about homogeneous polynomial maps (Q701322)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A remark about homogeneous polynomial maps |
scientific article; zbMATH DE number 1819661
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A remark about homogeneous polynomial maps |
scientific article; zbMATH DE number 1819661 |
Statements
A remark about homogeneous polynomial maps (English)
0 references
1 December 2003
0 references
This article deals with homogeneous polynomial maps \(F: \mathbb{R}^n\to\mathbb{R}^n\) of degree \(p\). The authors prove the following results. Theorem 1. If \(p\geq 3\), \(n\geq 2\) or \(p=2\), \(n\geq 4\) then there exists a map \(F: \mathbb{R}^n\to\mathbb{R}^n\) of degree \(p\) which is surjective and not proper; if \(p=1\), or \(n= 1\), or \(p=2\), \(n= 2,3\) then every map \(F: \mathbb{R}^n\to \mathbb{R}^n\) of degree \(p\) satisfies the property \(\{x\in \mathbb{R}^n: F(x)= 0\}\neq\{0\}\) implies \(\{F(x): x\in\mathbb{R}^n\}\neq \mathbb{R}^n\). Theorem 2. If \(p\geq 4\), \(n\geq 2\) or \(p=3\), \(n\geq 3\) then there exists a surjective map \(F: \mathbb{R}^n\to \mathbb{R}^n\) of degree \(p\) for which any right inverse map is unbounded; if \(p= 1\), or \(n=1\), or \(p=2\), \(n= 2,3\), or \(p=3\), \(n=2\) then any surjective map \(F: \mathbb{R}^n\to\mathbb{R}^n\) of degree \(p\) admits a bounded right inverse.
0 references
homogeneous polynomials
0 references
surjectivity
0 references
boundedness
0 references
right inverse
0 references