A basic hypergeometric approach to mock theta functions (Q704901)

From MaRDI portal





scientific article; zbMATH DE number 2130362
Language Label Description Also known as
English
A basic hypergeometric approach to mock theta functions
scientific article; zbMATH DE number 2130362

    Statements

    A basic hypergeometric approach to mock theta functions (English)
    0 references
    0 references
    20 January 2005
    0 references
    The author shows that the following mock theta functions of order six: \[ \begin{alignedat}{2} \varphi(q)&=\sum_{n=0}^{\infty} { (-1)^nq^{n^2}\left(q;q^2\right)_{n}\over \left(-q\right)_{2n}},&\quad \Psi(q)&=\sum_{n=0}^{\infty} { (-1)^nq^{(n+1)^2}\left(q;q^2\right)_{n}\over \left(-q\right)_{2n+1}}\\ \sigma(q)&=\sum_{n=0}^{\infty} { q^{(n+1)(n+1)/2}\left(-q\right)_{n}\over \left(q;q^2\right)_{n+1}},&\quad \rho(q)&=\sum_{n=0}^{\infty} { q^{n(n+1)/2}\left(-q\right)_{n}\over \left(q;q^2\right)_{n+1}},\\ \lambda(q)&=\sum_{n=0}^{\infty} { (-1)^nq^{n}\left(q;q^2\right)_{n}\over \left(-q\right)_{n}},&\quad \mu(q)&=\sum_{n=0}^{\infty} { (-1)^n\left(q\right)_{n}\over \left(-q\right)_{n}} \end{alignedat} \] are the combinations of basic hypergeometric series \({}_3\Phi_2\) and \({}_2\Phi_1\). \noindent He makes use of some results due to L. J. Slater and \textit{D. B. Sears} [Proc. Lond. Math. Soc. 53, 158-180 (1951; Zbl 0044.07705)] and \textit{L. J. Slater} [Generalized hypergeometric functions. (Cambridge University Press) (1966; Zbl 0135.28101)].
    0 references
    basic hypergeometric series
    0 references
    mock theta functions
    0 references

    Identifiers