A basic hypergeometric approach to mock theta functions (Q704901)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A basic hypergeometric approach to mock theta functions |
scientific article; zbMATH DE number 2130362
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A basic hypergeometric approach to mock theta functions |
scientific article; zbMATH DE number 2130362 |
Statements
A basic hypergeometric approach to mock theta functions (English)
0 references
20 January 2005
0 references
The author shows that the following mock theta functions of order six: \[ \begin{alignedat}{2} \varphi(q)&=\sum_{n=0}^{\infty} { (-1)^nq^{n^2}\left(q;q^2\right)_{n}\over \left(-q\right)_{2n}},&\quad \Psi(q)&=\sum_{n=0}^{\infty} { (-1)^nq^{(n+1)^2}\left(q;q^2\right)_{n}\over \left(-q\right)_{2n+1}}\\ \sigma(q)&=\sum_{n=0}^{\infty} { q^{(n+1)(n+1)/2}\left(-q\right)_{n}\over \left(q;q^2\right)_{n+1}},&\quad \rho(q)&=\sum_{n=0}^{\infty} { q^{n(n+1)/2}\left(-q\right)_{n}\over \left(q;q^2\right)_{n+1}},\\ \lambda(q)&=\sum_{n=0}^{\infty} { (-1)^nq^{n}\left(q;q^2\right)_{n}\over \left(-q\right)_{n}},&\quad \mu(q)&=\sum_{n=0}^{\infty} { (-1)^n\left(q\right)_{n}\over \left(-q\right)_{n}} \end{alignedat} \] are the combinations of basic hypergeometric series \({}_3\Phi_2\) and \({}_2\Phi_1\). \noindent He makes use of some results due to L. J. Slater and \textit{D. B. Sears} [Proc. Lond. Math. Soc. 53, 158-180 (1951; Zbl 0044.07705)] and \textit{L. J. Slater} [Generalized hypergeometric functions. (Cambridge University Press) (1966; Zbl 0135.28101)].
0 references
basic hypergeometric series
0 references
mock theta functions
0 references