Weighted approximation of functions with endpoint or inner singularities by Bernstein operators (Q705724)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weighted approximation of functions with endpoint or inner singularities by Bernstein operators |
scientific article; zbMATH DE number 2133897
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weighted approximation of functions with endpoint or inner singularities by Bernstein operators |
scientific article; zbMATH DE number 2133897 |
Statements
Weighted approximation of functions with endpoint or inner singularities by Bernstein operators (English)
0 references
14 February 2005
0 references
The authors construct two operators of Berstein type for the weighted approximation of functions with singularities at the endpoints or at any inner point and they give convergence as well as direct and converse approximation results involving the weighted modulus of smoothness of second order. In what follows we treat the case of functions with singularities at the endpoints. To state the approximation result, let us introduce the following notation: let \(w(x)=x^\alpha(1-x)^\beta\), \(\alpha,\beta \geq 0\), \(\alpha+\beta>0\), \(0\leq x\leq 1\), and \(C_w=\{f\in C((0,1)):\lim_{x\to 1}(wf)(x)=\lim_{x\to 0}(wf)(x)=0\}\). The norm in \(C_w\) is defined as \(\| wf\| _{C_w}:=\| wf\| =\sup_{0\leq x\leq 1}| (wf)(x)| \). Further, let \(\| wf\| _I=\sup_{\chi\in I}| (wf)(x)| \) for intervals \(I\). For smoother functions the Sobolov type space \(W^2_w\) is defined by \(W^2_w:=\{f\in C_w:f'\in AC ((0,1)), \| f''w\varphi ^2\| <\infty\}\), where \(\varphi(x)=\sqrt{x(1-x)}\) and \(A\ell (I)\) is the set of all absolutely continuous functions in \(I\). For \(f\in C_w\) define the weighted modulus of smoothness by \[ \omega^2_\varphi (f,t)_w=\sup_{0<h\leq t}\| w\Delta^2_{h\varphi}f\| _{I_h}+\| w\overset\leftarrow \Delta^2_h f\| _{[1-16h^2,1]}+\| w \overset\rightarrow \Delta^2_h f\| _{[0,16h^2]}, \] where \(I_h=[16h^2,1-16h^2]\), \[ \overset\rightarrow\Delta^2_h f (x)=f(x)-2f(x+h)+f(x+2h),\;\overset\leftarrow \Delta^2_h f(x)=f(x)-2f(x-h)+f(x-2h) \] and \[ \Delta^2_{h\varphi}f(x)=f(x+h\varphi(x)/2)- 2f(x)+f(x-h\varphi(x)/2). \] Now for every \(f\in C_w\) can be introduced the Bernstein type operator \[ \begin{aligned} B^*_n(f,x) &:=(1-x)^n \left[2f\left(\frac{1}{n}\right)-f\left(\frac{2}{n}\right)\right]+\sum^{n-1}_{k=1}\binom{n}{k}x^k(1-x)^{n-k}f \left(\frac{k}{n}\right)\\ &\quad +x^n\left[2f\left(1-\frac{1}{n}\right)-f\left(1-\frac{2}{n}\right)\right]. \end{aligned} \] Then the theorem in question is the following: Theorem. For every \(\alpha,\;\beta >0\) \[ \begin{aligned} & \| wB^*_n(f)\| \leq C\| wf\| , \quad \text{for all}\;f\in C_w, \\ &\| w[f-B^*_n(f)]\| \leq \begin{cases} \dfrac{c}{n}\| w \varphi^2 f''\| , & \text{if}\;f\in W^2_w\\ C\omega^2_\varphi \left(f,\dfrac{1}{\sqrt n}\right)w, & \text{if}\;f\in C_w,\end{cases} \\ &\| w\varphi^2 B^*_n (f)\| \leq \begin{cases} C_n\| wf\| , & \text{if}\;f\in C_w\\ C\| w\varphi^2 f''\| , & \text{if}\;f\in W^2_w, \end{cases} \\ & \| w [f-B^*_n (f)]\| =O(n^{-\delta/2}) \Leftrightarrow \omega^2_\varphi (f,h)_w=O(h^\delta), \;\delta<2. \end{aligned} \] Here \(C\) denotes a positive constant which may assume different values in different formulas.
0 references
weights with endpoint or inner zeros in \([0,1]\)
0 references
weighted modulus of smoothness and \(K\)-functional
0 references
Bernstein operator
0 references