More congruences for central binomial coefficients (Q710499)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: More congruences for central binomial coefficients |
scientific article; zbMATH DE number 5802575
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | More congruences for central binomial coefficients |
scientific article; zbMATH DE number 5802575 |
Statements
More congruences for central binomial coefficients (English)
0 references
19 October 2010
0 references
Let \(p>5\) be a prime number. The author proves that \[ \sum_{k=1}^{p-1}\frac{1}{k^2}\binom{2k}{k}^{-1}\equiv\frac13 \frac{H(1)}{p}\pmod {p^3} \] and that \[ \sum_{k=1}^{p-1}\frac{(-1)^k}{k^3}\binom{2k}{k}^{-1}\equiv-\frac25 \frac{H(1)}{p^2}\pmod {p^3}, \] where \(H(1)=\sum_{k=1}^{p-1}\frac{1}{k}\).
0 references
binomial coefficients
0 references
congruences
0 references
0 references
0.95803094
0 references
0.9560753
0 references
0.94093496
0 references
0.92223644
0 references
0.9130794
0 references
0.9130422
0 references
0.9130422
0 references