Hyperbolically convex functions and the generalized Fekete-Szegö functional (Q719568)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hyperbolically convex functions and the generalized Fekete-Szegö functional |
scientific article; zbMATH DE number 5956097
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hyperbolically convex functions and the generalized Fekete-Szegö functional |
scientific article; zbMATH DE number 5956097 |
Statements
Hyperbolically convex functions and the generalized Fekete-Szegö functional (English)
0 references
10 October 2011
0 references
The authors describe extremal functions for the generalized Fekete-Szegö functional \(\mathcal{L}_t(f)=|ta_3+a^2_2|\) with \(t\) real and \(f\) in the class of hyperbolically convex functions. The Julia variational formula is used to reduce the problem to mappings onto hyperbolic polygons having no more than two proper sides.
0 references
Fekete-Szegö functional
0 references
hyperbolically convex functions
0 references
Julia variation
0 references