Congruences for cubic partition pairs modulo powers of 3 (Q721853)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Congruences for cubic partition pairs modulo powers of 3 |
scientific article; zbMATH DE number 6908982
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Congruences for cubic partition pairs modulo powers of 3 |
scientific article; zbMATH DE number 6908982 |
Statements
Congruences for cubic partition pairs modulo powers of 3 (English)
0 references
20 July 2018
0 references
In the paper under review, the authors establish congruences for \(b(n)\) modulo arbitrary powers of three, where the partition function \(b(n)\) enumerates the number of cubic partition pairs of \(n\) and has generating function \[ \sum_{n=0}^{\infty}b(n)q^n=\frac{1}{(q;q)_{\infty}^2(q^2;q^2)_{\infty}^2}. \] For instance, they show that for integers \(j\geq 2\) and \(n\geq 0\), \[ b\left(3^{2j}n+\frac{3^{2j+1}+1}{4}\right)\equiv 0\,\pmod {3^{2j+1}}. \] The authors also prove some conjectures for \(b(n)\) modulo \(81\) and \(243\), proposed by the first author in [J Number Theory 171, 31--42 (2017; Zbl 1357.11105)].
0 references
cubic partition pairs
0 references
congruences
0 references
Ramanujan's cubic continued fraction
0 references
0 references
0 references