Spectral properties of the layer potentials on Lipschitz domains (Q733326)

From MaRDI portal





scientific article; zbMATH DE number 5615648
Language Label Description Also known as
English
Spectral properties of the layer potentials on Lipschitz domains
scientific article; zbMATH DE number 5615648

    Statements

    Spectral properties of the layer potentials on Lipschitz domains (English)
    0 references
    0 references
    0 references
    15 October 2009
    0 references
    Let \(K\) be the double layer potential related to the Laplace equation on a bounded Lipschitz domain \(\Omega\) in \({\mathbb R}^n\), \(n\geq 2\), and let \(K^*\) be the adjoint of \(K\). The authors study some spectral properties of \(K^*\). In particular, they show that when \(\Omega\) is a locally convex bounded Lipschitz domain, then \(\beta I-K^*\) is invertible in \(H^{-\alpha}(\partial \Omega)\), \(\alpha\in [0, 1]\), for all complex numbers \(\beta\) with \(|\beta|>\frac12\), and that when \(\Omega\) is an arbitrary bounded Lipschtitz domain, then \(\beta I-K^*\) is invertible in \(H^{-1/2}(\partial \Omega)\) for all \(\beta\in {\mathbb C}\setminus (-\frac12, \frac12]\).
    0 references
    0 references
    single layer potential
    0 references
    double layer potential
    0 references
    Lipschitz domain
    0 references
    resolvent
    0 references
    spectrum
    0 references

    Identifiers