Nontrivial homoclinic solutions for prescribed mean curvature Rayleigh equations (Q738598)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nontrivial homoclinic solutions for prescribed mean curvature Rayleigh equations |
scientific article; zbMATH DE number 6622906
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nontrivial homoclinic solutions for prescribed mean curvature Rayleigh equations |
scientific article; zbMATH DE number 6622906 |
Statements
Nontrivial homoclinic solutions for prescribed mean curvature Rayleigh equations (English)
0 references
5 September 2016
0 references
The authors establish sufficient conditions on the existence of periodic solutions and homoclinic (to \(0\)) solutions for the equation \[ \Biggl(\frac{x'(t)}{\sqrt{1+{x'(t)}^2}}\Biggr)' + f(x'(t)) + g(x(t)) = e(t), \] where \(f,g,e\) are continuous functions, \(f(0)=g(0)=0\).
0 references
prescribed mean curvature Rayleigh equation
0 references
homoclinic solution
0 references
periodic solution
0 references
Mawhin's continuation theorem
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.95238507
0 references
0.9228564
0 references
0.9130055
0 references
0.9128345
0 references
0.91195077
0 references
0.9117593
0 references
0.90972084
0 references
0.9053918
0 references