Nonlinear gradient estimates for elliptic equations in quasiconvex domains (Q745552)

From MaRDI portal





scientific article; zbMATH DE number 6494035
Language Label Description Also known as
English
Nonlinear gradient estimates for elliptic equations in quasiconvex domains
scientific article; zbMATH DE number 6494035

    Statements

    Nonlinear gradient estimates for elliptic equations in quasiconvex domains (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    14 October 2015
    0 references
    The authors study a general model of divergence form elliptic equations of \(p\)-Laplacian type over quasiconvex domains. Precisely, the following weak Dirichlet problem is considered \[ \begin{cases} \text{div}\, \mathbf{a}(x,Du)= \text{div}\, (|\mathbf{f}|^{p-2}\mathbf{f}) & \text{in } \Omega,\\ u=0 & \text{on}\;\partial\Omega, \end{cases} \] where \(\mathbf{a}(x,Du)\) satisfies suitable ellipticity and growth conditions modelled on the \(p\)-Laplace operator, \(\mathbf{f}\in L^p(\Omega;\mathbb{R}^n)\) is a given vector-valued function, \(p\in(1,\infty)\) and \(\Omega\subset\mathbb{R}^n\) is a bounded domain which is locally approximated by convex domains. The main result of the paper asserts a global nonlinear Calderón-Zygmund result in the sense that \(\mathbf{f}\in L^q(\Omega;\mathbb{R}^n)\) implies \(Du\in L^q(\Omega;\mathbb{R}^n)\) for all \(q\in[p,\infty).\) A generalization to Orlicz spaces is given as well.
    0 references
    equations of \(p\)-Laplacian type
    0 references
    global nonlinear Calderón-Zygmund result
    0 references
    generalization to Orlicz spaces
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references