Cyclicity of some Liénard systems (Q746494)

From MaRDI portal





scientific article; zbMATH DE number 6495273
Language Label Description Also known as
English
Cyclicity of some Liénard systems
scientific article; zbMATH DE number 6495273

    Statements

    Cyclicity of some Liénard systems (English)
    0 references
    0 references
    0 references
    0 references
    16 October 2015
    0 references
    The paper is devoted to the cyclicity problem of two families of Liénard systems \[ \dot{x}=y-\frac{q_n(x)}{(1-x)^m}, \quad \dot{y}=-g(x) \] and \[ \dot{x}=y-\frac{q_n(x)}{(1-\alpha x)(1-\beta x)}, \quad \dot{y}=-g(x), \quad \alpha\beta\neq 0, \] where \(q_n(x)=\sum_{i=0}^n a_ix^i\) and \(g(x)\) satisfies the following conditions \[ g(0)=0, \quad g'(0)>0, \quad g(-x)=-g(x). \] The authors study small-amplitude limit cycles and find the exact number of such limit cycles bifurcating from a center or focus at the origin for these families.
    0 references
    limit cycle
    0 references
    cyclicity
    0 references
    Liénard system
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers