On the q-log-concavity of Gaussian binomial coefficients (Q749535)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the q-log-concavity of Gaussian binomial coefficients |
scientific article; zbMATH DE number 4172976
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the q-log-concavity of Gaussian binomial coefficients |
scientific article; zbMATH DE number 4172976 |
Statements
On the q-log-concavity of Gaussian binomial coefficients (English)
0 references
1989
0 references
We give a combinatorial proof that \(\left[ \begin{matrix} a\\ k\end{matrix} \right]_ q\left[ \begin{matrix} b\\ \ell \end{matrix} \right]_ q-\left[ \begin{matrix} a\\ k-1\end{matrix} \right]_ q\left[ \begin{matrix} b\\ \ell +1\end{matrix} \right]_ q\) is a polynomial in q with non-negative coefficients for non-negative integers, a, b, k, \(\ell\) with \(a\geq b\) and \(\ell \geq k\). In particular, for \(a=b=n\) and \(\ell =k\), this implies the q-log-concavity of the Gaussian binomial coefficients \(\left[ \begin{matrix} n\\ k\end{matrix} \right]_ q\), which was conjectured by \textit{L. M. Butler} [Proc. Am. Math. Soc. 101, 771-775 (1987; Zbl 0647.20053)].
0 references
0.95261544
0 references
0.9260646
0 references
0 references
0.8929297
0 references
0.8795355
0 references
0.87881154
0 references
0.87760544
0 references
0.8771819
0 references
0.8749737
0 references